Saturday, 30 June 2018

Blockchain for beginners

A blockchain is a continuously growing list of records, called blocks, which are linked and secured using cryptography. Each block typically contains a cryptographic hash of the previous block,a timestamp, and transaction data. By design, a blockchain is resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way".

For use as a distributed ledger, a blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without alteration of all subsequent blocks, which requires consensus of the network majority.

Blockchains are secure by design and exemplify a distributed computing system with high Byzantine fault tolerance. Decentralized consensus has therefore been achieved with a blockchain. This makes blockchains potentially suitable for the recording of events, medical records,and other records management activities, such as identity management, transaction processing, documenting provenance, food traceability, and voting.

Blockchain was invented by Satoshi Nakamoto in 2008 to serve as the public transaction ledger of the cryptocurrency bitcoin.[1] The invention of the blockchain for bitcoin made it the first digital currency to solve the double-spending problem without the need of a trusted authority or central server. The bitcoin design has inspired other applications.

The first work on a cryptographically secured chain of blocks was described in 1991 by Stuart Haber and W. Scott Stornetta. They wanted to implement a system where documents' timestamps could not be tampered with or backdated. In 1992, Bayer, Haber and Stornetta incorporated Merkle trees to the design, which improved its efficiency by allowing several documents to be collected into one block.

The first blockchain was conceptualized by a person (or group of people) known as Satoshi Nakamoto in 2008. It was implemented the following year by Nakamoto as a core component of the cryptocurrency bitcoin, where it serves as the public ledger for all transactions on the network. Through the use of a blockchain, bitcoin became the first digital currency to solve the double-spending problem without requiring a trusted authority and has been the inspiration for many additional applications.

In August 2014, the bitcoin blockchain file size, containing records of all transactions that have occurred on the network, reached 20 GB (gigabytes). In January 2015, the size had grown to almost 30 GB, and from January 2016 to January 2017, the bitcoin blockchain grew from 50 GB to 100 GB in size.

The words block and chain were used separately in Satoshi Nakamoto's original paper, but were eventually popularized as a single word, blockchain, by 2016. The term blockchain 2.0 refers to new applications of the distributed blockchain database, first emerging in 2014.

The Economist described one implementation of this second-generation programmable blockchain as coming with "a programming language that allows users to write more sophisticated smart contracts, thus creating invoices that pay themselves when a shipment arrives or share certificates which automatically send their owners dividends if profits reach a certain level."

Blockchain 2.0 technologies go beyond transactions and enable "exchange of value without powerful intermediaries acting as arbiters of money and information." They are expected to enable excluded people to enter the global economy, protect the privacy of participants, allow people to "monetize their own information," and provide the capability to ensure creators are compensated for their intellectual property. Second-generation blockchain technology makes it possible to store an individual's "persistent digital ID and persona" and provides an avenue to help solve the problem of social inequality by "potentially changing the way wealth is distributed".

As of 2016, blockchain 2.0 implementations continue to require an off-chain oracle to access any "external data or events based on time or market conditions [that need] to interact with the blockchain."

Blocks hold batches of valid transactions that are hashed and encoded into a Merkle tree. Each block includes the cryptographic hash of the prior block in the blockchain, linking the two. The linked blocks form a chain. This iterative process confirms the integrity of the previous block, all the way back to the original genesis block.


By storing data across its peer-to-peer network, the blockchain eliminates a number of risks that come with data being held centrally. The decentralized blockchain may use ad-hoc message passing and distributed networking.

Peer-to-peer blockchain networks lack centralized points of vulnerability that computer crackers can exploit; likewise, it has no central point of failure. Blockchain security methods include the use of public-key cryptography. A public key (a long, random-looking string of numbers) is an address on the blockchain. Value tokens sent across the network are recorded as belonging to that address. A private key is like a password that gives its owner access to their digital assets or the means to otherwise interact with the various capabilities that blockchains now support. Data stored on the blockchain is generally considered incorruptible.

Every node in a decentralized system has a copy of the blockchain. Data quality is maintained by massive database replication and computational trust. No centralized "official" copy exists and no user is "trusted" more than any other.

Open blockchains are more user-friendly than some traditional ownership records, which, while open to the public, still require physical access to view. Because all early blockchains were permissionless, controversy has arisen over the blockchain definition. An issue in this ongoing debate is whether a private system with verifiers tasked and authorized (permissioned) by a central authority should be considered a blockchain.

The great advantage to an open, permissionless, or public, blockchain network is that guarding against bad actors is not required and no access control is needed. This means that applications can be added to the network without the approval or trust of others, using the blockchain as a transport layer.

Bitcoin and other cryptocurrencies currently secure their blockchain by requiring new entries to include a proof of work. To prolong the blockchain, bitcoin uses Hashcash puzzles. While Hashcash was designed in 1997 by Adam Back, the original idea was first proposed by Cynthia Dwork and Moni Naor and Eli Ponyatovski in their 1992 paper "Pricing via Processing or Combatting Junk Mail".


Blockchain technology can be integrated into multiple areas. The primary use of blockchains today is as a distributed ledger for cryptocurrencies, most notably bitcoin. While a few central banks, in countries and regions such as India, China, Hong Kong, United States, Sweden, Singapore, South Africa and the United Kingdom are studying issuance of a Central Bank Issued Cryptocurrency (CICC), none have done so as of 22 December 2016.

General potential

Blockchain technology has a large potential to transform business operating models in the long term. Blockchain distributed ledger technology is more a foundational technology—with the potential to create new foundations for global economic and social systems—than a disruptive technology, which typically "attack a traditional business model with a lower-cost solution and overtake incumbent firms quickly". Even so, there are a few operational products maturing from proof of concept by late 2016. The use of blockchains promises to bring significant efficiencies to global supply chains, financial transactions, asset ledgers and decentralized social networking.

Types of blockchains

Currently, there are three types of blockchain networks - public blockchains, private blockchains and consortium blockchains.

Public blockchains

A public blockchain has absolutely no access restrictions. Anyone with an internet connection can send transactions[disambiguation needed] to it as well as become a validator (i.e., participate in the execution of a consensus protocol). [149][self-published source?] Usually, such networks offer economic incentives for those who secure them and utilize some type of a Proof of Stake or Proof of Work algorithm.

Some of the largest, most known public blockchains are Bitcoin and Ethereum.

Private blockchains

A private blockchain is permissioned. One cannot join it unless invited by the network administrators. Participant and validator access is restricted.

This type of blockchains can be considered a middle-ground for companies that are interested in the blockchain technology in general but are not comfortable with a level of control offered by public networks. Typically, they seek to incorporate blockchain into their accounting and record-keeping procedures without sacrificing autonomy and running the risk of exposing sensitive data to the public internet.

Consortium blockchains

A consortium blockchain is often said to be semi-decentralized. It, too, is permissioned but instead of a single organization controlling it, a number of companies might each operate a node on such a network. The administrators of a consortium chain restrict users’ reading rights as they see fit and only allow a limited set of trusted nodes to execute a consensus protocol.

No comments:

Post a Comment